python使用pandas实现筛选功能方式

作者:*山河万里*

在数据分析的过程中通常要对数据进行清洗与处理,而其中比较重要和常见的操作就有对数据进行筛选与查询,下面这篇文章主要给大家介绍了关于python使用pandas实现筛选功能方式的相关资料,需要的朋友可以参考下

1 筛选出数据的指定几行数据

data=df.loc[2:5] 
#这里的[2:5]表示第3行到第5行内容,[]第一个起始是0,表示数据的第一行

2 筛选出数据某列为某值的所有数据记录

data = df[(df['列名1']== ‘列值1')]
# 多条件匹配时
data_many=df[(df['列名1']== ‘列值1')&(df['列名2']==‘列值2')]
# 多值匹配时
data_many=df[df['列名1'] in [‘值1',‘值2',......]]

3 模式匹配

# 开头包含某值的模式匹配
cond=df['列名'].str.startswith('值')
$ 中间包含某值的模式匹配
cond=df['列名'].str.contains('值')

4 范围区间值筛选

# 筛选出基于两个值之间的数据:
cond=df[(df['列名1']>‘列值1')&(df['列名1']<‘列值2')] 

5 获取某一行某一列的某个值

print(ridership_df.loc['05-05-11','R003'])
print(ridership_df.iloc[4,0])
# 结果:

6 获取原始的numpy二维数组

print(df.values)

7 根据条件得到某行元素所在的位置

import pandas as pd
df = pd.DataFrame({'BoolCol': [1, 2, 3, 3, 4],'attr': [22, 33, 22, 44, 66]},index=[10,20,30,40,50])
print(df)
a = df[(df.BoolCol==3)&(df.attr==22)].index.tolist()
b = df[(df.BoolCol==3)&(df.attr==22)].index[0]
c = df[(df.BoolCol==3)&(df.attr==22)].index.values
print(a)

8 元素位置筛选

print(date_frame)                # 打印完整显示的效果
print(date_frame.shape)            # 获取df的行数、列数元祖
print(date_frame.head(2))        # 前2行
print(date_frame.tail(2))        # 后2行
print(date_frame.index.tolist())        # 只获取df的索引列表
print(date_frame.columns.tolist())        # 只获取df的列名列表
print(date_frame.values.tolist())        # 只获取df的所有值的列表(二维列表)

9. 删除多行/多列

# 使用的前提是,dataframe的index和columns用的是数字,利用了drop()和range()函数。
DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')
# axis = 0,表示删除行; axis = 1 表示删除列。
# 想删除多行/列,用range即可,比如要删除前3行,drop(range(0,3),axis = 0(默认为零,可不写))即可。

10 to_datetime将字符串格式转化为日期格式

import datetime
import pandas as pd
dictDate = {'date': ['2019-11-01 19:30', '2019-11-30 19:00']}
df = pd.DataFrame(dictDate)
df['datetime'] = pd.to_datetime(df['date'])
df['today'] = df['datetime'].apply(lambda x: x.strftime('%Y%m%d'))
df['tomorrow'] = (df['datetime'] + datetime.timedelta(days=1)).dt.strftime('%Y%m%d')

11 apply() 函数

# pandas 的 apply() 函数可以作用于 Series 或者整个 DataFrame,功能也是自动遍历整个 Series 或者 DataFrame, 对每一个元素运行指定的函数。
def add_extra(nationality, extra):
    if nationality != "汉":
        return extra
    else:
        return 0
df['ExtraScore'] = df.Nationality.apply(add_extra, args=(5,))
df['ExtraScore'] = df.Nationality.apply(add_extra, extra=5)
df['Extra'] = df.Nationality.apply(lambda n, extra : extra if n == '汉' else 0, args=(5,))
def add_extra2(nationaltiy, **kwargs):
    return kwargs[nationaltiy]
df['Extra'] = df.Nationality.apply(add_extra2, 汉=0, 回=10, 藏=5)

12 map() 函数

import datetime
import pandas as pd
def f(x):
    x = str(x)[:8]
    if x !='n':
        gf = datetime.datetime.strptime(x, "%Y%m%d")
        x = gf.strftime("%Y-%m-%d")
    return x
def f2(x):
    if str(x) not in [' ', 'nan']:
        dd = datetime.datetime.strptime(str(x), "%Y/%m/%d")
        x = dd.strftime("%Y-%m-%d")
    return x  
def test():
    df = pd.DataFrame()
    df1 = pd.read_csv("600694_gf.csv")
    df2=pd.read_csv("600694.csv")
    df['date1'] =df2['DateTime'].map(f2) 
    df['date2'] =df1['date'].map(f)
    df.to_csv('map.csv')

到此这篇关于python使用pandas实现筛选功能方式的文章就介绍到这了,更多相关pandas筛选功能内容请搜索脚本之家以前的文章或继续浏览下面的相关文章希望大家以后多多支持脚本之家!

您可能感兴趣的文章:
  • pandas中pd.groupby()的用法详解
    pandas中pd.groupby()的用法详解
    2022-06-06
  • Python静态Web服务器面向对象处理客户端请求
    Python静态Web服务器面向对象处理客户端请求
    2022-06-06
  • Python进阶学习修改闭包内使用的外部变量
    Python进阶学习修改闭包内使用的外部变量
    2022-06-06
  • 关于VSCode 配置使用 PyLint 语法检查器的问题
    关于VSCode 配置使用 PyLint 语法检查器的问题
    2022-06-06
  • Pandas中DataFrame常用操作指南
    Pandas中DataFrame常用操作指南
    2022-06-06
  • python使用pandas实现筛选功能方式
    python使用pandas实现筛选功能方式
    2022-06-06
  • PyTorch中torch.nn.Linear实例详解
    PyTorch中torch.nn.Linear实例详解
    2022-06-06
  • 如何实现python爬虫爬取视频时实现实时进度条显示
    如何实现python爬虫爬取视频时实现实时进度条显示
    2022-06-06
  • 美国设下计谋,用娘炮文化重塑日本,已影响至中国
    美国设下计谋,用娘炮文化重塑日本,已影响至中国
    2021-11-19
  • 时空伴随者是什么意思?时空伴随者介绍
    时空伴随者是什么意思?时空伴随者介绍
    2021-11-09
  • 工信部称网盘企业免费用户最低速率应满足基本下载需求,天翼云盘回应:坚决支持,始终
    工信部称网盘企业免费用户最低速率应满足基本下载需求,天翼云盘回应:坚决支持,始终
    2021-11-05
  • 2022年放假安排出炉:五一连休5天 2022年所有节日一览表
    2022年放假安排出炉:五一连休5天 2022年所有节日一览表
    2021-10-26
  • 电脑版 - 返回首页

    2006-2023 脚本之家 JB51.Net , All Rights Reserved.
    苏ICP备14036222号