相关文章推荐
酒量小的凳子  ·  Null reference Error ...·  1 年前    · 
爱玩的鸡蛋面  ·  ComboBox 类 ...·  1 年前    · 

Eureka Server存在三个变量:(registry、readWriteCacheMap、readOnlyCacheMap)保存服务注册信息,默认情况下定时任务每30s将readWriteCacheMap同步至readOnlyCacheMap,每60s清理超过90s未续约的节点,Eureka Client每30s从readOnlyCacheMap更新服务注册信息,而UI则从registry更新服务注册信息。

readWriteCacheMap:是Guava缓存,数据主要同步于存储层即注册表registry 。当获取缓存时判断缓存中是否没有数据,如果不存在此数据,则通过 CacheLoader 的 load 方法去加载,加载成功之后将数据放入缓存,同时返回数据。默认180s过期,当服务下线、过期、注册、状态变更,都会来清除此缓存中的数据。

缓存工作方式:

eureka.server.useReadOnlyResponseCache Client从readOnlyCacheMap更新数据,false则跳过readOnlyCacheMap直接从readWriteCacheMap更新 eureka.server.responsecCacheUpdateIntervalMs 30000 readWriteCacheMap更新至readOnlyCacheMap周期,默认30s eureka.server.evictionIntervalTimerInMs 60000 清理未续约节点周期,默认60s eureka.instance.leaseExpirationDurationInSeconds 清理未续约节点超时时间,默认90s

eureka server端的多级缓存机制

  • 重点看看eureka server端的多级缓存机制的过期失效机制。
  • 在server端,关于过期,其实有3中机制,分别是主动过期,被动过期和定时过期。

    1、主动过期

    主动过期主要是针对RW缓存,有新的服务注册、下线、故障都会刷新RW缓存的Map

    比如有一个新实例来注册,在注册逻辑最后会调用invalidateCache方法,这个方法就是去过期掉RW缓存的Map。

    Eureka Server在接受Eureka Client服务注册的流程,即AbstractInstanceRegistry类的register方法最后会调用invalidateCache方法清理缓存为入口

    public abstract class AbstractInstanceRegistry implements InstanceRegistry {
        private final ConcurrentHashMap<String, Map<String, Lease<InstanceInfo>>> registry
                = new ConcurrentHashMap<String, Map<String, Lease<InstanceInfo>>>();         
        public void register(InstanceInfo registrant, int leaseDuration, boolean isReplication) {
            try {
                // 上只读锁
                read.lock();
                // 从本地MAP里面获取当前实例的信息。
                Map<String, Lease<InstanceInfo>> gMap = registry.get(registrant.getAppName());
                //省略中间代码。。。。。。
                // 放入本地Map中
                gMap.put(registrant.getId(), lease);
                //省略中间代码。。。。。。
                // 设置注册类型为添加
                registrant.setActionType(ActionType.ADDED);
                // 租约变更记录队列,记录了实例的每次变化, 用于注册信息的增量获取
                recentlyChangedQueue.add(new RecentlyChangedItem(lease));
                registrant.setLastUpdatedTimestamp();
                // 清理缓存 ,传入的参数为key
                invalidateCache(registrant.getAppName(), registrant.getVIPAddress(), registrant.getSecureVipAddress());
                logger.info("Registered instance {}/{} with status {} (replication={})",
                        registrant.getAppName(), registrant.getId(), registrant.getStatus(), isReplication);
            } finally {
                read.unlock();
    
    public abstract class AbstractInstanceRegistry implements InstanceRegistry {
        protected volatile ResponseCache responseCache;           
        private void invalidateCache(String appName, @Nullable String vipAddress, @Nullable String secureVipAddress) {
            // 清除缓存
            responseCache.invalidate(appName, vipAddress, secureVipAddress);
    public class ResponseCacheImpl implements ResponseCache {
        @Override
        public void invalidate(String appName, @Nullable String vipAddress, @Nullable String secureVipAddress) {
            for (Key.KeyType type : Key.KeyType.values()) {
                for (Version v : Version.values()) {
                    invalidate(
                            new Key(Key.EntityType.Application, appName, type, v, EurekaAccept.full),
                            new Key(Key.EntityType.Application, appName, type, v, EurekaAccept.compact),
                            new Key(Key.EntityType.Application, ALL_APPS, type, v, EurekaAccept.full),
                            new Key(Key.EntityType.Application, ALL_APPS, type, v, EurekaAccept.compact),
                            new Key(Key.EntityType.Application, ALL_APPS_DELTA, type, v, EurekaAccept.full),
                            new Key(Key.EntityType.Application, ALL_APPS_DELTA, type, v, EurekaAccept.compact)
                    if (null != vipAddress) {
                        invalidate(new Key(Key.EntityType.VIP, vipAddress, type, v, EurekaAccept.full));
                    if (null != secureVipAddress) {
                        invalidate(new Key(Key.EntityType.SVIP, secureVipAddress, type, v, EurekaAccept.full));
    

    在这里会调用readWriteCacheMap.invalidate(key)来过期RW缓存Map的数据,服务下线、故障都会走类似的逻辑。

    public class ResponseCacheImpl implements ResponseCache {
        private final LoadingCache<Key, Value> readWriteCacheMap;
        public void invalidate(Key... keys) {
            for (Key key : keys) {
                logger.debug("Invalidating the response cache key : {} {} {} {}, {}",
                        key.getEntityType(), key.getName(), key.getVersion(), key.getType(), key.getEurekaAccept());
                readWriteCacheMap.invalidate(key);
                Collection<Key> keysWithRegions = regionSpecificKeys.get(key);
                if (null != keysWithRegions && !keysWithRegions.isEmpty()) {
                    for (Key keysWithRegion : keysWithRegions) {
                        logger.debug("Invalidating the response cache key : {} {} {} {} {}",
                                key.getEntityType(), key.getName(), key.getVersion(), key.getType(), key.getEurekaAccept());
                        readWriteCacheMap.invalidate(keysWithRegion);
    

    2、被动过期

    被动过期,主要是针对RO缓存,readOnlyCacheMap默认是每隔30秒,执行一个定时调度的线程任务,TimerTask,对readOnlyCacheMap和readWriteCacheMap中的数据进行一个比对,如果两块数据不一致的,那么就将readWriteCacheMap中的数据放到readOnlyCacheMap中来。

    比如说readWriteCacheMap中,ALL_APPS这个key对应的缓存没了,那么最多30秒过后,就会同步到readOnelyCacheMap中去。

    这段代码依然在ResponseCacheImpl的构造方法里,这个timer叫做一个eureka缓存填充的timer。

    public class ResponseCacheImpl implements ResponseCache {
        private final java.util.Timer timer = new java.util.Timer("Eureka-CacheFillTimer", true);
        ResponseCacheImpl(EurekaServerConfig serverConfig, ServerCodecs serverCodecs, AbstractInstanceRegistry registry) {
            if (shouldUseReadOnlyResponseCache) {
                timer.schedule(getCacheUpdateTask(),
                        new Date(((System.currentTimeMillis() / responseCacheUpdateIntervalMs) * responseCacheUpdateIntervalMs)
                                + responseCacheUpdateIntervalMs),
                        responseCacheUpdateIntervalMs);
            try {
                Monitors.registerObject(this);
            } catch (Throwable e) {
                logger.warn("Cannot register the JMX monitor for the InstanceRegistry", e);
    

    可以看到它的getCacheUpdateTask()方法直接返回一个TimerTask,就是完成RW缓存和RO缓存数据交互的逻辑。

    public class ResponseCacheImpl implements ResponseCache {
        private final ConcurrentMap<Key, Value> readOnlyCacheMap = new ConcurrentHashMap<Key, Value>();
        private final LoadingCache<Key, Value> readWriteCacheMap;
        private TimerTask getCacheUpdateTask() {
            return new TimerTask() {
                @Override
                public void run() {
                    logger.debug("Updating the client cache from response cache");
                    for (Key key : readOnlyCacheMap.keySet()) {
                        if (logger.isDebugEnabled()) {
                            logger.debug("Updating the client cache from response cache for key : {} {} {} {}",
                                    key.getEntityType(), key.getName(), key.getVersion(), key.getType());
                        try {
                            CurrentRequestVersion.set(key.getVersion());
                            Value cacheValue = readWriteCacheMap.get(key);
                            Value currentCacheValue = readOnlyCacheMap.get(key);
                            //如果RO缓存中的数据和RW不一致,则put
                            if (cacheValue != currentCacheValue) {
                                readOnlyCacheMap.put(key, cacheValue);
                        } catch (Throwable th) {
                            logger.error("Error while updating the client cache from response cache for key {}", key.toStringCompact(), th);
                        } finally {
                            CurrentRequestVersion.remove();
    

    而这个responseCacheUpdateIntervalMs,默认30s。

    @Singleton
    public class DefaultEurekaServerConfig implements EurekaServerConfig {
        @Override
        public long getResponseCacheUpdateIntervalMs() {
            return configInstance.getIntProperty(
                    namespace + "responseCacheUpdateIntervalMs", (30 * 1000)).get();
    

    3、定时过期

    这个定时过期,实际上也是针对RW缓存的那个readWriteCacheMap的,在构建的时候会指定一个自动过期的时间,默认是180s,因此放入RW缓存中的数据默认会在3分钟之内过期掉。

    public class ResponseCacheImpl implements ResponseCache {
        private final ConcurrentMap<Key, Value> readOnlyCacheMap = new ConcurrentHashMap<Key, Value>();
        private final LoadingCache<Key, Value> readWriteCacheMap;
        ResponseCacheImpl(EurekaServerConfig serverConfig, ServerCodecs serverCodecs, AbstractInstanceRegistry registry) {
            this.readWriteCacheMap =
                CacheBuilder.newBuilder().initialCapacity(serverConfig.getInitialCapacityOfResponseCache())
                    .expireAfterWrite(serverConfig.getResponseCacheAutoExpirationInSeconds(), TimeUnit.SECONDS)
                    .removalListener(new RemovalListener<Key, Value>() {
                        @Override
                        public void onRemoval(RemovalNotification<Key, Value> notification) {
                            Key removedKey = notification.getKey();
                            if (removedKey.hasRegions()) {
                                Key cloneWithNoRegions = removedKey.cloneWithoutRegions();
                                regionSpecificKeys.remove(cloneWithNoRegions, removedKey);
                    .build(new CacheLoader<Key, Value>() {
                        @Override
                        public Value load(Key key) throws Exception {
                            if (key.hasRegions()) {
                                Key cloneWithNoRegions = key.cloneWithoutRegions();
                                regionSpecificKeys.put(cloneWithNoRegions, key);
                            Value value = generatePayload(key);
                            return value;
            //省略部分代码......
    

    通过源码可以明确,这个getResponseCacheAutoExpirationInSeconds()的默认值就是180s。

    @Singleton
    public class DefaultEurekaServerConfig implements EurekaServerConfig {
        @Override
        public long getResponseCacheAutoExpirationInSeconds() {
            return configInstance.getIntProperty(
                    namespace + "responseCacheAutoExpirationInSeconds", 180).get();
    

    Eureka Client获取注册信息

    Eureka Client获取注册信息通过ApplicationsResource类的getContainers方法为入口

    @Path("/{version}/apps")
    @Produces({"application/xml", "application/json"})
    public class ApplicationsResource {
        public Response getContainers(@PathParam("version") String version,
                                      @HeaderParam(HEADER_ACCEPT) String acceptHeader,
                                      @HeaderParam(HEADER_ACCEPT_ENCODING) String acceptEncoding,
                                      @HeaderParam(EurekaAccept.HTTP_X_EUREKA_ACCEPT) String eurekaAccept,
                                      @Context UriInfo uriInfo,
                                      @Nullable @QueryParam("regions") String regionsStr) {
            boolean isRemoteRegionRequested = null != regionsStr && !regionsStr.isEmpty();
            String[] regions = null;
            if (!isRemoteRegionRequested) {
                EurekaMonitors.GET_ALL.increment();
            } else {
                regions = regionsStr.toLowerCase().split(",");
                Arrays.sort(regions); // So we don't have different caches for same regions queried in different order.
                EurekaMonitors.GET_ALL_WITH_REMOTE_REGIONS.increment();
            // Check if the server allows the access to the registry. The server can
            // restrict access if it is not
            // ready to serve traffic depending on various reasons.
            // EurekaServer无法提供服务,返回403
            if (!registry.shouldAllowAccess(isRemoteRegionRequested)) {
                return Response.status(Status.FORBIDDEN).build();
            CurrentRequestVersion.set(Version.toEnum(version));
            // 设置返回数据格式,默认JSON
            KeyType keyType = Key.KeyType.JSON;
            String returnMediaType = MediaType.APPLICATION_JSON;
            // 如果接收到的请求头部没有具体格式信息,则返回格式为XML
            if (acceptHeader == null || !acceptHeader.contains(HEADER_JSON_VALUE)) {
                keyType = Key.KeyType.XML;
                returnMediaType = MediaType.APPLICATION_XML;
            //创建一个缓存对象 构建缓存键
            Key cacheKey = new Key(Key.EntityType.Application,
                    ResponseCacheImpl.ALL_APPS, //全量
                    keyType, CurrentRequestVersion.get(), EurekaAccept.fromString(eurekaAccept), regions
            Response response;
            // 返回不同的编码类型的数据,去缓存中取数据的方法基本一致
            if (acceptEncoding != null && acceptEncoding.contains(HEADER_GZIP_VALUE)) {
                response = Response.ok(responseCache.getGZIP(cacheKey)) //获取压缩的数据
                        .header(HEADER_CONTENT_ENCODING, HEADER_GZIP_VALUE)
                        .header(HEADER_CONTENT_TYPE, returnMediaType)
                        .build();
            } else {
                response = Response.ok(responseCache.get(cacheKey))
                        .build();
            CurrentRequestVersion.remove();
            return response;
    

    responseCache.getGZIP(cacheKey)

  • 从缓存中读取GZIP压缩数据。
  • public class ResponseCacheImpl implements ResponseCache {
        private final ConcurrentMap<Key, Value> readOnlyCacheMap = new ConcurrentHashMap<Key, Value>();
        private final LoadingCache<Key, Value> readWriteCacheMap;
        public byte[] getGZIP(Key key) {
            Value payload = getValue(key, shouldUseReadOnlyResponseCache);
            if (payload == null) {
                return null;
            return payload.getGzipped();
        @VisibleForTesting
        Value getValue(final Key key, boolean useReadOnlyCache) {
            Value payload = null;
            try {
                if (useReadOnlyCache) {
                    //首先从只读缓存中获取, 即readOnlyCacheMap
                    final Value currentPayload = readOnlyCacheMap.get(key);
                    if (currentPayload != null) {
                        payload = currentPayload;
                    } else {
                        //只读缓存readOnlyCacheMap中没有,从readWriteCacheMap缓存中获取
                        payload = readWriteCacheMap.get(key);
                        //回写只读缓存readOnlyCacheMap
                        readOnlyCacheMap.put(key, payload);
                } else {
                    payload = readWriteCacheMap.get(key);
            } catch (Throwable t) {
                logger.error("Cannot get value for key : {}", key, t);
            return payload;
    

    responseCache.get(cacheKey)

  • 从缓存中读取数据。
  • public class ResponseCacheImpl implements ResponseCache {
        private final ConcurrentMap<Key, Value> readOnlyCacheMap = new ConcurrentHashMap<Key, Value>();
        private final LoadingCache<Key, Value> readWriteCacheMap;
        public String get(final Key key) {
            return get(key, shouldUseReadOnlyResponseCache);
        @VisibleForTesting
        String get(final Key key, boolean useReadOnlyCache) {
            Value payload = getValue(key, useReadOnlyCache);
            if (payload == null || payload.getPayload().equals(EMPTY_PAYLOAD)) {
                return null;
            } else {
                return payload.getPayload();
        @VisibleForTesting
        Value getValue(final Key key, boolean useReadOnlyCache) {
            Value payload = null;
            try {
                if (useReadOnlyCache) {
                    //首先从只读缓存中获取, 即readOnlyCacheMap
                    final Value currentPayload = readOnlyCacheMap.get(key);
                    if (currentPayload != null) {
                        payload = currentPayload;
                    } else {
                        //只读缓存readOnlyCacheMap中没有,从readWriteCacheMap缓存中获取
                        payload = readWriteCacheMap.get(key);
                        //回写只读缓存readOnlyCacheMap
                        readOnlyCacheMap.put(key, payload);
                } else {
                    payload = readWriteCacheMap.get(key);
            } catch (Throwable t) {
                logger.error("Cannot get value for key : {}", key, t);
            return payload;
    

    二、Eureka Client

    Eureka Client存在两种角色:服务提供者和服务消费者,作为服务消费者一般配合Ribbon或Feign(Feign内部使用Ribbon)使用。Eureka Client启动后,作为服务提供者立即向Eureka Server注册,默认情况下每30s续约;作为服务消费者立即向Server全量更新服务注册信息,默认情况下每30s增量更新服务注册信息;Ribbon延时1s向Client获取使用的服务注册信息,默认每30s更新使用的服务注册信息,只保存状态为UP的服务。

    localRegionApps AtomicReference 周期更新,类DiscoveryClient成员变量,Eureka Client保存服务注册信息,启动后立即向Server全量更新,默认每30s增量更新 upServerListZoneMap ConcurrentHashMap 周期更新,类LoadBalancerStats成员变量,Ribbon保存使用且状态为UP的服务注册信息,启动后延时1s向Client更新,默认每30s更新

    缓存相关配置

    eureka.client.registryFetchIntervalSeconds Eureka Client增量更新周期,默认30s(正常情况下增量更新,超时或与Server端不一致等情况则全量更新) ribbon.ServerListRefreshInterval 30000 Ribbon更新周期,默认30s

    EurekaClient 缓存

    EurekaClient也存在缓存,应用服务实例列表信息在每个EurekaClient服务消费端都有缓存。一般的,Ribbon的LoadBalancer会读取这个缓存,来知道当前有哪些实例可以调用,从而进行负载均衡。这个loadbalancer同样也有缓存。

    首先看这个LoadBalancer的缓存更新机制,相关类是PollingServerListUpdater:

    public class PollingServerListUpdater implements ServerListUpdater {
        @Override
        public synchronized void start(final UpdateAction updateAction) {
            if (isActive.compareAndSet(false, true)) {
                final Runnable wrapperRunnable = new Runnable() {
                    @Override
                    public void run() {
                        if (!isActive.get()) {
                            if (scheduledFuture != null) {
                                scheduledFuture.cancel(true);
                            return;
                        try {
                            //从EurekaClient缓存中获取服务实例列表,保存在本地缓存
                            updateAction.doUpdate();
                            lastUpdated = System.currentTimeMillis();
                        } catch (Exception e) {
                            logger.warn("Failed one update cycle", e);
                // 使用线程池周期性的执行wrapperRunnable任务
                scheduledFuture = getRefreshExecutor().scheduleWithFixedDelay(
                        wrapperRunnable,
                        initialDelayMs,
                        refreshIntervalMs,
                        TimeUnit.MILLISECONDS
            } else {
                logger.info("Already active, no-op");
    

    DynamicServerListLoadBalancer.updateListOfServers()代码逻辑

    public class DynamicServerListLoadBalancer<T extends Server> extends BaseLoadBalancer {
        public DynamicServerListLoadBalancer(IClientConfig clientConfig) {
            class NamelessClass_1 implements UpdateAction {
                public void doUpdate() {
                    DynamicServerListLoadBalancer.this.updateListOfServers();
        @VisibleForTesting
        public void updateListOfServers() {
            List<T> servers = new ArrayList();
            if (this.serverListImpl != null) {
                servers = this.serverListImpl.getUpdatedListOfServers();
                LOGGER.debug("List of Servers for {} obtained from Discovery client: {}", this.getIdentifier(), servers);
                if (this.filter != null) {
                    servers = this.filter.getFilteredListOfServers((List)servers);
                    LOGGER.debug("Filtered List of Servers for {} obtained from Discovery client: {}", this.getIdentifier(), servers);
            this.updateAllServerList((List)servers);
    

    serverListImpl.getUpdatedListOfServers()会调用DiscoveryEnabledNIWSServerList.obtainServersViaDiscovery()方法获取servers集合

    DiscoveryEnabledNIWSServerList.obtainServersViaDiscovery()方法

    public class DiscoveryEnabledNIWSServerList extends AbstractServerList<DiscoveryEnabledServer>{
        @Override
        public List<DiscoveryEnabledServer> getUpdatedListOfServers(){
            return obtainServersViaDiscovery();
        private List<DiscoveryEnabledServer> obtainServersViaDiscovery() {
            List<DiscoveryEnabledServer> serverList = new ArrayList<DiscoveryEnabledServer>();
            if (eurekaClientProvider == null || eurekaClientProvider.get() == null) {
                logger.warn("EurekaClient has not been initialized yet, returning an empty list");
                return new ArrayList<DiscoveryEnabledServer>();
            EurekaClient eurekaClient = eurekaClientProvider.get();
            if (vipAddresses!=null){
                for (String vipAddress : vipAddresses.split(",")) {
                    // if targetRegion is null, it will be interpreted as the same region of client
                    List<InstanceInfo> listOfInstanceInfo = eurekaClient.getInstancesByVipAddress(vipAddress, isSecure, targetRegion);
                    for (InstanceInfo ii : listOfInstanceInfo) {
                        if (ii.getStatus().equals(InstanceStatus.UP)) {
                            if(shouldUseOverridePort){
                                if(logger.isDebugEnabled()){
                                    logger.debug("Overriding port on client name: " + clientName + " to " + overridePort);
                                // copy is necessary since the InstanceInfo builder just uses the original reference,
                                // and we don't want to corrupt the global eureka copy of the object which may be
                                // used by other clients in our system
                                InstanceInfo copy = new InstanceInfo(ii);
                                if(isSecure){
                                    ii = new InstanceInfo.Builder(copy).setSecurePort(overridePort).build();
                                }else{
                                    ii = new InstanceInfo.Builder(copy).setPort(overridePort).build();
                            DiscoveryEnabledServer des = createServer(ii, isSecure, shouldUseIpAddr);
                            serverList.add(des);
                    if (serverList.size()>0 && prioritizeVipAddressBasedServers){
                        break; // if the current vipAddress has servers, we dont use subsequent vipAddress based servers
            return serverList;
    

    从代码中可以看到,listOfInstanceInfo持有从DiscoveryClient.LocalRegionApps/remoteRegionVsApps获取到的信息后,与region和zone结合形成DiscoveryEnabledServer实例,流入到List集合返回

    public class DynamicServerListLoadBalancer<T extends Server> extends BaseLoadBalancer {
        protected void updateAllServerList(List<T> ls) {
            if (this.serverListUpdateInProgress.compareAndSet(false, true)) {
                try {
                    Iterator var2 = ls.iterator();
                    while(var2.hasNext()) {
                        T s = (Server)var2.next();
                        s.setAlive(true);
                    //调用setServersList方法
                    this.setServersList(ls);
                    super.forceQuickPing();
                } finally {
                    this.serverListUpdateInProgress.set(false);
        public void setServersList(List lsrv) {
            // 赋值给BaseLoadBalacer.upServerList
            super.setServersList(lsrv);
            Map<String, List<Server>> serversInZones = new HashMap();
            Iterator var4 = lsrv.iterator();
            while(var4.hasNext()) {
                Server server = (Server)var4.next();
                // 赋值给LoadBalancerStats.zoneStatsMap
                this.getLoadBalancerStats().getSingleServerStat(server);
                String zone = server.getZone();
                if (zone != null) {
                    zone = zone.toLowerCase();
                    List<Server> servers = (List)serversInZones.get(zone);
                    if (servers == null) {
                        servers = new ArrayList();
                        serversInZones.put(zone, servers);
                    ((List)servers).add(server);
            this.setServerListForZones(serversInZones);
        protected void setServerListForZones(Map<String, List<Server>> zoneServersMap) {
            LOGGER.debug("Setting server list for zones: {}", zoneServersMap);
            //更新upServerListZoneMap缓存
            this.getLoadBalancerStats().updateZoneServerMapping(zoneServersMap);
    public class LoadBalancerStats implements IClientConfigAware {
        volatile Map<String, ZoneStats> zoneStatsMap = new ConcurrentHashMap<String, ZoneStats>();
        volatile Map<String, List<? extends Server>> upServerListZoneMap = new ConcurrentHashMap<String, List<? extends Server>>();
        public void updateZoneServerMapping(Map<String, List<Server>> map) {
            upServerListZoneMap = new ConcurrentHashMap<String, List<? extends Server>>(map);
            // make sure ZoneStats object exist for available zones for monitoring purpose
            for (String zone: map.keySet()) {
                //更新zoneStatsMap
                getZoneStats(zone);
        private ZoneStats getZoneStats(String zone) {
            zone = zone.toLowerCase();
            ZoneStats zs = zoneStatsMap.get(zone);
            if (zs == null){
                zoneStatsMap.put(zone, new ZoneStats(this.getName(), zone, this));
                zs = zoneStatsMap.get(zone);
            return zs;
    

    这个updateAction.doUpdate();就是从EurekaClient缓存中获取服务实例列表,保存在BaseLoadBalancer的本地缓存,入口在DynamicServerListLoadBalancer的setServersList方法的super.setServersList(lsrv)方法处:

    public class BaseLoadBalancer extends AbstractLoadBalancer implements
            PrimeConnections.PrimeConnectionListener, IClientConfigAware {
        @Monitor(name = PREFIX + "AllServerList", type = DataSourceType.INFORMATIONAL)
        protected volatile List<Server> allServerList = Collections
                .synchronizedList(new ArrayList<Server>());
        public void setServersList(List lsrv) {
            //写入allServerList的代码,这里略
        @Override
        public List<Server> getAllServers() {
            return Collections.unmodifiableList(allServerList);
    

    这里的getAllServers会在每个负载均衡规则中被调用,例如RoundRobinRule:

    public class RoundRobinRule extends AbstractLoadBalancerRule {
        public Server choose(ILoadBalancer lb, Object key) {
            if (lb == null) {
                log.warn("no load balancer");
                return null;
            Server server = null;
            int count = 0;
            while (server == null && count++ < 10) {
                List<Server> reachableServers = lb.getReachableServers();
                //获取服务实例列表,调用的就是刚刚提到的getAllServers
                List<Server> allServers = lb.getAllServers();
                int upCount = reachableServers.size();
                int serverCount = allServers.size();
                if ((upCount == 0) || (serverCount == 0)) {
                    log.warn("No up servers available from load balancer: " + lb);
                    return null;
                int nextServerIndex = incrementAndGetModulo(serverCount);
                server = allServers.get(nextServerIndex);
                if (server == null) {
                    /* Transient. */
                    Thread.yield();
                    continue;
                if (server.isAlive() && (server.isReadyToServe())) {
                    return (server);
                // Next.
                server = null;
            if (count >= 10) {
                log.warn("No available alive servers after 10 tries from load balancer: "
                        + lb);
            return server;
    

    这个缓存需要注意下,有时候我们只修改了EurekaClient缓存的更新时间,但是没有修改这个LoadBalancer的刷新本地缓存时间,就是ribbon.ServerListRefreshInterval,这个参数可以设置的很小,因为没有从网络读取,就是从一个本地缓存刷到另一个本地缓存。

    然后我们来看一下EurekaClient本身的缓存,直接看关键类DiscoveryClient的相关源码,我们这里只关心本地Region的,多Region配置我们先忽略:

    @Singleton
    public class DiscoveryClient implements EurekaClient {
        //本地缓存,可以理解为是一个软链接
        private final AtomicReference<Applications> localRegionApps = new AtomicReference<Applications>();
         * 初始化所有计划的任务
        private void initScheduledTasks() {
            //如果配置为需要拉取服务列表,则设置定时拉取任务,这个配置默认是需要拉取服务列表
            if (clientConfig.shouldFetchRegistry()) {
                // registry cache refresh timer
                int registryFetchIntervalSeconds = clientConfig.getRegistryFetchIntervalSeconds();
                int expBackOffBound = clientConfig.getCacheRefreshExecutorExponentialBackOffBound();
                cacheRefreshTask = new TimedSupervisorTask(
                        "cacheRefresh",
                        scheduler,
                        cacheRefreshExecutor,
                        registryFetchIntervalSeconds,
                        TimeUnit.SECONDS,
                        expBackOffBound,
                        new CacheRefreshThread()
                scheduler.schedule(
                        cacheRefreshTask,
                        registryFetchIntervalSeconds, TimeUnit.SECONDS);
            //其他定时任务初始化的代码,忽略
        //定时从EurekaServer拉取服务列表的任务
        class CacheRefreshThread implements Runnable {
            public void run() {
                refreshRegistry();
        @VisibleForTesting
        void refreshRegistry() {
            try {
                //多Region配置处理代码,忽略
                boolean success = fetchRegistry(remoteRegionsModified);
                if (success) {
                    registrySize = localRegionApps.get().size();
                    lastSuccessfulRegistryFetchTimestamp = System.currentTimeMillis();
                //日志代码,忽略
            } catch (Throwable e) {
                logger.error("Cannot fetch registry from server", e);
        //定时从EurekaServer拉取服务列表的核心方法
        private boolean fetchRegistry(boolean forceFullRegistryFetch) {
            Stopwatch tracer = FETCH_REGISTRY_TIMER.start();
            try {
                // If the delta is disabled or if it is the first time, get all
                // applications
                Applications applications = getApplications();
                //判断,如果是第一次拉取,或者app列表为空,就进行全量拉取,否则就会进行增量拉取
                if (clientConfig.shouldDisableDelta()
                        || (!Strings.isNullOrEmpty(clientConfig.getRegistryRefreshSingleVipAddress()))
                        || forceFullRegistryFetch
                        || (applications == null)
                        || (applications.getRegisteredApplications().size() == 0)
                        || (applications.getVersion() == -1)) //Client application does not have latest library supporting delta
                    logger.info("Disable delta property : {}", clientConfig.shouldDisableDelta());
                    logger.info("Single vip registry refresh property : {}", clientConfig.getRegistryRefreshSingleVipAddress());
                    logger.info("Force full registry fetch : {}", forceFullRegistryFetch);
                    logger.info("Application is null : {}", (applications == null));
                    logger.info("Registered Applications size is zero : {}",
                            (applications.getRegisteredApplications().size() == 0));
                    logger.info("Application version is -1: {}", (applications.getVersion() == -1));
                    //全量拉取更新
                    getAndStoreFullRegistry();
                } else {
                    //增量拉取更新
                    getAndUpdateDelta(applications);
                applications.setAppsHashCode(applications.getReconcileHashCode());
                logTotalInstances();
            } catch (Throwable e) {
                logger.error(PREFIX + "{} - was unable to refresh its cache! status = {}", appPathIdentifier, e.getMessage(), e);
                return false;
            } finally {
                if (tracer != null) {
                    tracer.stop();
            //缓存更新完成,发送个event给观察者
            onCacheRefreshed();
            // 检查下远端的服务实例列表里面包括自己,并且状态是否对
            updateInstanceRemoteStatus();
            // registry was fetched successfully, so return true
            return true;
    
    全量更新本地缓存的服务列表

    getAndStoreFullRegistry方法负责全量更新,代码如下所示,非常简单的逻辑:

    @Singleton
    public class DiscoveryClient implements EurekaClient {
        //本地缓存,可以理解为是一个软链接
        private final AtomicReference<Applications> localRegionApps = new AtomicReference<Applications>();
        private void getAndStoreFullRegistry() throws Throwable {
            long currentUpdateGeneration = fetchRegistryGeneration.get();
            logger.info("Getting all instance registry info from the eureka server");
            Applications apps = null;
            //由于并没有配置特别关注的region信息,
            //因此会调用eurekaTransport.queryClient.getApplications方法从服务端获取服务列表
            EurekaHttpResponse<Applications> httpResponse = clientConfig.getRegistryRefreshSingleVipAddress() == null
                    ? eurekaTransport.queryClient.getApplications(remoteRegionsRef.get())
                    : eurekaTransport.queryClient.getVip(clientConfig.getRegistryRefreshSingleVipAddress(), remoteRegionsRef.get());
            if (httpResponse.getStatusCode() == Status.OK.getStatusCode()) {
                //返回对象就是服务列表
                apps = httpResponse.getEntity();
            logger.info("The response status is {}", httpResponse.getStatusCode());
            if (apps == null) {
                logger.error("The application is null for some reason. Not storing this information");
            //考虑到多线程同步,只有CAS成功的线程,才会把自己从Eureka server获取的数据来替换本地缓存   
            } else if (fetchRegistryGeneration.compareAndSet(currentUpdateGeneration, currentUpdateGeneration + 1)) {
                //localRegionApps就是本地缓存,是个AtomicReference实例
                localRegionApps.set(this.filterAndShuffle(apps));
                logger.debug("Got full registry with apps hashcode {}", apps.getAppsHashCode());
            } else {
                logger.warn("Not updating applications as another thread is updating it already");
    

    获取服务列表信息的增量更新

    获取服务列表信息的增量更新是通过getAndUpdateDelta方法完成的,具体分析请看下面的中文注释:

    @Singleton
    public class DiscoveryClient implements EurekaClient {
        //本地缓存,可以理解为是一个软链接
        private final AtomicReference<Applications> localRegionApps = new AtomicReference<Applications>();
        private void getAndUpdateDelta(Applications applications) throws Throwable {
            long currentUpdateGeneration = fetchRegistryGeneration.get();
            Applications delta = null;
            //增量信息是通过eurekaTransport.queryClient.getDelta方法完成的
            EurekaHttpResponse<Applications> httpResponse = eurekaTransport.queryClient.getDelta(remoteRegionsRef.get());
            if (httpResponse.getStatusCode() == Status.OK.getStatusCode()) {
                //delta中保存了Eureka server返回的增量更新
                delta = httpResponse.getEntity();
            if (delta == null) {
                logger.warn("The server does not allow the delta revision to be applied because it is not safe. "
                        + "Hence got the full registry.");
                //如果增量信息为空,就直接发起一次全量更新
                getAndStoreFullRegistry();
            //考虑到多线程同步问题,这里通过CAS来确保请求发起到现在是线程安全的,
            //如果这期间fetchRegistryGeneration变了,就表示其他线程也做了类似操作,因此放弃本次响应的数据
            else if (fetchRegistryGeneration.compareAndSet(currentUpdateGeneration, currentUpdateGeneration + 1)) {
                logger.debug("Got delta update with apps hashcode {}", delta.getAppsHashCode());
                String reconcileHashCode = "";
                if (fetchRegistryUpdateLock.tryLock()) {
                    try {
                        //用Eureka返回的增量数据和本地数据做合并操作,这个方法稍后会细说
                        updateDelta(delta);
                        //用合并了增量数据之后的本地数据来生成一致性哈希码
                        reconcileHashCode = getReconcileHashCode(applications);
                    } finally {
                        fetchRegistryUpdateLock.unlock();
                } else {
                    logger.warn("Cannot acquire update lock, aborting getAndUpdateDelta");
                //Eureka server在返回增量更新数据时,也会返回服务端的一致性哈希码,
                //理论上每次本地缓存数据经历了多次增量更新后,计算出的一致性哈希码应该是和服务端一致的,
                //如果发现不一致,就证明本地缓存的服务列表信息和Eureka server不一致了,需要做一次全量更新
                if (!reconcileHashCode.equals(delta.getAppsHashCode()) || clientConfig.shouldLogDeltaDiff()) {
                    //一致性哈希码不同,就在reconcileAndLogDifference方法中做全量更新
                    reconcileAndLogDifference(delta, reconcileHashCode);  // this makes a remoteCall
            } else {
                logger.warn("Not updating application delta as another thread is updating it already");
                logger.debug("Ignoring delta update with apps hashcode {}, as another thread is updating it already", delta.getAppsHashCode());
    

    上面就是对于EurekaClient拉取服务实例信息的源代码分析:

  • EurekaClient第一次全量拉取,定时增量拉取应用服务实例信息,保存在缓存中。
  • EurekaClient增量拉取失败,或者增量拉取之后对比hashcode发现不一致,就会执行全量拉取,这样避免了网络某时段分片带来的问题。
  • 同时对于服务调用,如果涉及到ribbon负载均衡,那么ribbon对于这个实例列表也有自己的缓存,这个缓存定时从EurekaClient的缓存更新
  • https://blog.csdn.net/qq_40378034/article/details/103850144

    https://www.processon.com/view/5d4e871ce4b04399f59f9e22