openmpi和mpich的区别

时间: 2024-07-25 15:01:04 浏览: 63
OpenMPI (Open Message Passing Interface) 和 MPICH (Message Passing Interface for Clusters and High Performance Computing) 都是高性能并行计算框架,用于在分布式[系统](https://geek.csdn.net/educolumn/073441cd796e7450c3f98600b0cbeb95?spm=1055.2569.3001.10083)上实现进程间的通信,支持大规模数据共享和协同工作。它们的主要区别在于: 1. **起源与社区**: OpenMPI是由Open Source Community维护的一个项目,它起源于大学研究环境,并逐渐成为开源世界的标准工具之一。MPICH最初由美国劳伦斯伯克利国家实验室开发,也是当时领先的并行计算库。 2. **发展历史**: MPICH在90年代后期开始流行,随着时间和技术的发展,它经历了几个[版本](https://geek.csdn.net/educolumn/04449e2eb7da35a9c72dce97dbf43e2a?spm=1055.2569.3001.10083)[迭代](https://geek.csdn.net/educolumn/0b788626ca95a378c56d60cb2acd8f0b?spm=1055.2569.3001.10083);而OpenMPI是在21世纪初由多个组织合作创建的,旨在提供更现代、模块化的设计以及更好的兼容性和易用性。 3. **许可证**: MPICH曾经有专有的部分,但现在也大部分开源。相比之下,OpenMPI从一开始就是遵循开放源码[协议](https://geek.csdn.net/educolumn/036f533958d9baf75220e71cff26d527?spm=1055.2569.3001.10083)的。 4. **功能与性能**: 两者在基本功能上相似,如支持点对点通信、进程间通信等,但在某些方面可能存在细微差别,比如API设计或者特定场景下的优化程度。OpenMPI由于其现代化设计,可能更适合现代计算环境。 5. **生态支持**:由于OpenMPI的活跃社区和广泛的用户基础,它的生态可能更为丰富,有更多的第三方库和教程支持。 6. **更新[频率](https://geek.csdn.net/educolumn/0107aff6559db6ae81100d4beedc65af?spm=1055.2569.3001.10083)与稳定性**: OpenMPI通常更快地响应新的技术和需求,而MPICH可能因为历史包袱,更新速度较慢,但

相关推荐

最新推荐

recommend-type

2013年语义扩展查询研究:提升信息检索效果

该论文"信息检索技术中基于语义的扩展查询研究 (2013年)"探讨了在信息检索领域的一个关键问题:用户查询与文档之间的语义匹配问题,尤其是在词法不匹配的情况下,如何提高检索效果。作者认识到,传统基于关键词的检索系统受制于文本的表面形式,往往无法捕捉到深层次的语义含义,导致检索结果的不准确。 论文指出,为了缓解这一问题,作者借鉴和改进了现有的概念相似度计算算法,提出了基于本体的信息检索查询扩展方法。本体在这里指的是知识库或者领域模型,用于存储和管理领域内的概念、属性和关系。通过构建本体模型,可以计算出概念之间的语义相似度,以此作为评价查询结果相关度的标准。新提出的模型QCR(Q, Ci) = ∑k=1,...,K wk*Sim_Rel(qK, Ci),将查询与候选文档的相似度得分考虑在内,从而引入了查询扩展,使得即使用户输入的查询词在文档中没有出现,也能根据语义关联找到相关文档。 这种方法允许用户设置相似度阈值,当本体中的概念不足以支持语义检索时,会切换回传统的关键词检索,从而确保在保证准确性的同时,兼顾了系统的灵活性。这种结合了语义和词典匹配的策略,有效地解决了垂直检索系统在处理多义词和同义词时的局限性,提升了检索效率和用户体验。 论文的关键点包括:信息检索中的语义扩展查询、概念相似度计算的改进、本体技术的应用以及查询结果的相关度评价。该研究对于改进搜索引擎的性能,特别是在处理自然语言复杂性和多义性方面,具有重要的理论和实践价值。通过本体模型的支持,用户能够获得更贴近他们意图的检索结果,推动了信息检索技术向着更智能、更人性化的方向发展。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

OpenCV中值滤波在图像处理中的应用:降噪、边缘检测和形态学操作,解锁图像处理新境界

![opencv中值滤波](https://img-blog.csdnimg.cn/f5b8b53f0e3742da98c3afd9034a61eb.png) # 1. OpenCV中值滤波的基本原理 中值滤波是一种非线性图像处理技术,它通过替换每个像素值周围像素的中值来消除图像中的噪声。其基本原理如下: 1. **滑动窗口:**在图像上移动一个固定大小的窗口(例如,3x3 或 5x5)。 2. **像素排序:**将窗口内的所有像素值按从小到大排序。 3. **中值计算:**取排序后的像素值的中值,并将其替换为窗口中心像素的原始值。 4. **窗口移动:**将窗口移动到图像的下一个像素,并
recommend-type

pip 是用来干嘛的

pip是Python包管理工具,它允许开发者安装、升级和卸载Python项目所需的第三方库或模块。通过pip,你可以轻松地从PyPI(Python Package Index,Python软件包索引)或其他源获取代码,并将其添加到项目的依赖中,使得项目管理和协作更为便捷。pip支持自动处理依赖关系,并且可以创建虚拟环境,避免不同项目之间的包版本冲突。使用pip的基本命令有`install`, `upgrade`, `uninstall`等。
recommend-type

填充函数法提升OD矩阵估计的全局优化

本文探讨了基于填充函数方法的OD矩阵估计,针对现有逐次迭代算法在求解OD矩阵估计中的局限性,特别是对于最小二乘模型全局最优解的寻找。作者指出,传统的逐次迭代算法可能容易陷入局部最优,而不一定能找到全局最优解,这在处理复杂网络的OD矩阵估计时尤为明显。为解决这个问题,作者引入了填充函数算法,这是一种全局优化策略,其优势在于能够有效地搜索到问题的全局最优解,并且不受初始值选择的影响。 填充函数方法通过构建一个连续的函数来替代目标函数,使得问题的全局最优解可以通过求解函数的极值点得到。这种方法在数值试验中表现出强大的性能,不仅解决了初始值敏感性的问题,还为复杂网络的OD矩阵估计提供了一种有效手段。然而,权值的选择对最终的估计结果有着显著影响。因此,文中提出了确定权值的评价指标——均方根误差(RMSE),这个指标能够衡量估计值与真实值之间的差异,帮助决策者选择更合适的权值。 OD矩阵,即Origin-Destination矩阵,是交通规划中的核心概念,它反映出一个区域内的出行流量分布情况,对于理解城市交通结构、评估交通政策以及进行交通系统管理具有重要意义。传统的OD矩阵获取方法,如大规模的人工抽样调查,因成本高、效率低且数据更新不及时而逐渐被替代。相比之下,利用路段观测数据推算OD矩阵的方法因其高效和经济而受到关注。 本文的研究成果对于改进OD矩阵估计的计算效率和准确性具有积极意义,特别是在大数据背景下,通过填充函数方法和适当的权值选择,可以提高OD矩阵估计的实用性和可靠性,从而为交通规划和管理提供更为精准的数据支持。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

OpenCV中值滤波与其他滤波器的比较:优势与劣势,选择最优图像处理方案

![opencv中值滤波](https://img-blog.csdnimg.cn/f5b8b53f0e3742da98c3afd9034a61eb.png) # 1. 图像滤波概述** 图像滤波是一种图像处理技术,用于消除图像中的噪声和增强图像特征。滤波操作通过将每个像素值替换为其邻域中其他像素值的函数来实现。滤波器的类型根据其使用的函数而异,每种滤波器都具有独特的优势和劣势。在本章中,我们将探讨图像滤波的基本概念,包括滤波器的分类、目标和应用。 # 2. 中值滤波理论 ### 2.1 中值滤波原理 中值滤波是一种非线性滤波技术,它通过计算图像中每个像素周围邻域像素的中值来替换该像素
recommend-type

Python画,山茶花

Python通过一些绘图库,如matplotlib和PIL,可以绘制各种图形,包括山茶花。山茶花是一种美丽的花卉,我们可以使用简单的数据可视化技术生成它的图案。例如,你可以使用matplotlib中的scatter函数创建花瓣形状,再结合一些艺术性的调整来模拟山茶花的外观。 下面是一个简化的例子,展示如何使用matplotlib来绘制一个基本的山茶花形状: ```python import matplotlib.pyplot as plt import numpy as np # 设置参数 n_points = 50 radius = 1 angle = np.linspace(0, 2
recommend-type

多主体合作视角下的旅游景区联盟收益分配研究

"基于多主体合作的旅游景区合作联盟收益分配研究 (2014年),作者马文斌、田宇、杨莉华、王波,发表于《重庆师范大学学报(自然科学版)》2014年3月刊。文章讨论了城市周边景区通过合作联盟进行共同营销的现象,并构建了多主体合作对策的旅游景区合作联盟收益分配模型。" 这篇论文关注的是旅游景区合作联盟的收益分配问题,特别是在城市周边以休闲度假为目的的旅游市场日益增长的背景下。作者分析了旅游景区合作联盟中各参与方的理性条件,即各景区的利益诉求和合作动机。他们建立了一个模型,该模型基于多主体合作对策理论,旨在公平且有效地分配联盟产生的收益。 在模型构建中,文章引入了Shapley值法、核心法和简化的MCRS法等多种求解策略,这些方法都是博弈论中的经典工具,用于解决合作博弈中的收益分配问题。通过实例研究,作者展示了如何运用这些方法来计算各景区应得的联盟收益。研究表明,景区对联盟的贡献(如资源投入)与其获得的收益分配成正比。这意味着投入资源更多的景区将能获得更高的联盟收益。 关键词包括“旅游景区”、“合作对策”、“合作联盟”和“收益分配”,表明论文主要探讨的是旅游业中的合作机制和利益分配原则。文章的结论指出,景区加入合作联盟并增加资源投入是一种理性的选择,因为这能带来更大的收益回报。