MySQL分页到了后面越来越慢,有什么好的解决办法?

后台系统的订单列表随着订单越来越多,分页的页数也越来越多,导致查询前面一些页的历史订单会越来越慢。
关注者
158
被浏览
180,058

22 个回答

开发经常遇到分页查询的需求,但是当翻页过多的时候,就会产生深分页,导致查询效率急剧下降。

有没有什么办法,能解决深分页的问题呢?

本文总结了三种优化方案,查询效率直接提升10倍,一起学习一下。

1. 准备数据

先创建一张用户表,只在create_time字段上加索引:

CREATE TABLE `user` (
  `id` int NOT NULL AUTO_INCREMENT COMMENT '主键',
  `name` varchar(255) DEFAULT NULL COMMENT '姓名',
  `create_time` timestamp NULL DEFAULT NULL COMMENT '创建时间',
  PRIMARY KEY (`id`),
  KEY `idx_create_time` (`create_time`)
) ENGINE=InnoDB COMMENT='用户表';

然后往用户表中插入100万条测试数据,这里可以使用存储过程:

drop PROCEDURE IF EXISTS insertData;
DELIMITER $$
create procedure insertData()
begin
 declare i int default 1;
   while i <= 100000 do
         INSERT into user (name,create_time) VALUES (CONCAT("name",i), now());
         set i = i + 1; 
   end while; 
end $$
call insertData() $$

2. 验证深分页问题

每页10条,当我们查询第一页的时候,速度很快:

select * from user 
where create_time>'2022-07-03' 
limit 0,10;


在不到0.01秒内直接返回了,所以没显示出执行时间。

当我们翻到第10000页的时候,查询效率急剧下降:

select * from user 
where create_time>'2022-07-03' 
limit 100000,10;


执行时间变成了0.16秒,性能至少下降了几十倍。

耗时主要花在哪里了?

  1. 需要扫描前10条数据,数据量较大,比较耗时
  2. create_time是非聚簇索引,需要先查询出主键ID,再回表查询,通过主键ID查询出所有字段

画一下回表查询流程:

1. 先通过create_time查询出主键ID


2. 再通过主键ID查询出表中所有字段


别问为什么B+树的结构是这样的?问就是规定。

可以看一下前两篇文章。

可以看一下前两篇文章。

MySQL索引底层实现为什么要用B+树?

一篇文章讲清楚MySQL的聚簇/联合/覆盖索引、回表、索引下推

然后我们就针对这两个耗时原因进行优化。

3. 优化查询

3.1 使用子查询

先用子查询查出符合条件的主键,再用主键ID做条件查出所有字段。

select * from user 
where id in (
  select id from user 
  where create_time>'2022-07-03' 
  limit 100000,10
);

不过这样查询会报错,说是子查询中不支持使用limit。


我们加一层子查询嵌套,就可以了:

select * from user 
where id in (
 select id from (
    select id from user 
    where create_time>'2022-07-03' 
    limit 100000,10
 ) as t
);


执行时间缩短到0.05秒,减少了0.12秒,相当于查询性能提升了3倍。

为什么先用子查询查出符合条件的主键ID,就能缩短查询时间呢?

我们用explain查看一下执行计划就明白了:

explain select * from user 
where id in (
 select id from (
    select id from user 
    where create_time>'2022-07-03' 
    limit 100000,10
 ) as t
);


可以看到Extra列显示子查询中用到 Using index ,表示用到了 覆盖索引 ,所以子查询无需回表查询,加快了查询效率。

3.2 使用inner join关联查询

把子查询的结果当成一张临时表,然后和原表进行关联查询。

select * from user 
inner join (
   select id from user 
    where create_time>'2022-07-03' 
    limit 100000,10
) as t on user.id=t.id;


查询性能跟使用子查询一样。

3.3 使用分页游标(推荐)

实现方式就是:当我们查询第二页的时候,把第一页的查询结果放到第二页的查询条件中。

例如:首先查询第一页

select * from user 
where create_time>'2022-07-03' 
limit 10;

然后查询第二页,把第一页的查询结果放到第二页查询条件中:

select * from user 
where create_time>'2022-07-03' and id>10 
limit 10;

这样相当于每次都是查询第一页,也就不存在深分页的问题了,推荐使用。


执行耗时是0秒,查询性能直接提升了几十倍。

这样的查询方式虽然好用,但是又带来一个问题,就是无法跳转到指定页数,只能一页页向下翻。

所以这种查询只适合特定场景,比如资讯类APP的首页。

互联网APP一般采用瀑布流的形式,比如百度首页、头条首页,都是一直向下滑动翻页,并没有跳转到制定页数的需求。

不信的话,可以看一下,这是头条的瀑布流:


传参中带了上一页的查询结果。


响应数据中,返回了下一页查询条件。

所以这种查询方式的应用场景还是挺广的,赶快用起来吧。

知识点总结:

推荐阅读:《我爱背八股系列》

一灯架构:面试官竟然问我订单ID是怎么生成的?难道不是MySQL自增主键?
一灯架构:面试官竟然问我怎么分库分表?幸亏我总结了一套八股文
一灯架构:面试官竟然问我怎么实现分布式锁?幸亏我总结了全套八股文
一灯架构:面试官竟然问我消息队列为啥会丢失消息?幸亏我总结了全套八股文
一灯架构:面试官问我MySQL索引为啥用B+树?我让他去问作者
一灯架构:记一次ThreadLocal引发的线上故障,年终奖没了,可能还面临辞退
一灯架构:一篇文章讲清楚MySQL的聚簇/联合/覆盖索引、回表、索引下推
一灯架构:面试官竟然问我MySQL事务的底层原理?幸亏我总结了全套八股文
一灯架构:MySQL的锁这么多,不知从何学起,看完这篇文章就够了
一灯架构:面试官问我一条update语句加了多少锁?我总结了全套八股文
一灯架构:记一次排查线上MySQL死锁过程,不能只会crud,还要知道加锁原理
一灯架构:彻底搞懂三大MySQL日志,Redo Log、Undo Log、Bin Log
一灯架构:高级程序员必知必会,一文详解MySQL主从同步原理

其实这个也是最常问的面试题了

eg:面试官问了我一道题:MySQL 单表上亿,怎么优化分页查询?

方案概述

方案一:优化现有mysql数据库。优点:不影响现有业务,源程序不需要修改代码,成本最低。缺点:有优化瓶颈,数据量过亿就玩完了。

方案二:升级数据库类型,换一种100%兼容mysql的数据库。优点:不影响现有业务,源程序不需要修改代码,你几乎不需要做任何操作就能提升数据库性能,缺点:多花钱

方案三:一步到位,大数据解决方案,更换newsql/nosql数据库。优点:扩展性强,成本低,没有数据容量瓶颈,缺点:需要修改源程序代码

以上三种方案,按顺序使用即可,数据量在亿级别一下的没必要换nosql,开发成本太高。三种方案我都试了一遍,而且都形成了落地解决方案。该过程心中慰问跑路的那几个开发者一万遍 :曹尼玛,这代码怎么写的?)

limit分页原理

当我们翻到最后几页时,查询的sql通常是: select * from table where column=xxx order by xxx limit 1000000,10
查询非常慢。但是我们查看前几页的时候,速度并不慢。这是因为limit的偏移量太大导致的。
MySql使用limit时的原理是(用上面的例子举例):

  1. MySql将查询出1000010条记录。
  2. 然后舍掉前面的1000000条记录。
  3. 返回剩下的10条记录。

上述的过程是在《高性能MySql》书中确认的。

今天直说SQL相关的优化!

1、表容量的问题

2、总页数的问题

2.1、页面 不需要显示总页数 ,仅显示附近的页码,这样可以避免单表总行数的查询。

2.2 需要显示总页数 :

使用 InnoDB 引擎,新建一张表记录业务表的总数,新增、删除各自在同一事务中增减总行数然后查询,保证事务的一致性和隔离性。当然,这里更新总行数要借助分布式锁或 CAS 方式更新记录总数的表。

不带条件 + 自增 id 字段连续

where id >= ? and id < ?
where id between
where id >= ? limit 10

主键 id + 带查询条件

select * from table t1
(select id from table where condition limit 10) t2
on t1.id = t2.id 
order by t1.id asc

毕竟 偏移量越大,花费时间越长!

优化偏移量大问题 采用子查询方式 我们可以先定位偏移位置的 id,然后再查询数据

SELECT * FROM `user_operation_log` LIMIT 1000000, 10
SELECT id FROM `user_operation_log` LIMIT 1000000, 1
SELECT * FROM `user_operation_log` WHERE id >= (SELECT id FROM `user_operation_log` LIMIT 1000000, 1)
  • 第一条花费的时间最大,第三条比第一条稍微好点
  • 子查询使用索引速度更快

以上只适用于id递增的情况。

SELECT * FROM `user_operation_log` WHERE id IN (SELECT t.id FROM (SELECT id FROM `user_operation_log` LIMIT 1000000, 10) AS t)

采用 id 限定方式

这种方法要求更高些,id必须是连续递增,而且还得计算id的范围,然后使用 between,sql如下

SELECT * FROM `user_operation_log` WHERE id between 1000000 AND 1000100 LIMIT 100
SELECT * FROM `user_operation_log` WHERE id >= 1000000 LIMIT 100

总结

1.合理使用索引

索引是数据库中重要的数据结构,它的根本目的就是为了提高查询效率。现在大多数的数据库产品都采用IBM最先提出的ISAM索引结构。索引的使用要恰到好处,其使用原则如下:

●在经常进行连接,但是没有指定为外键的列上建立索引,而不经常连接的字段则由优化器自动生成索引。

●在频繁进行排序或分组(即进行group by或order by操作)的列上建立索引。

●在条件表达式中经常用到的不同值较多的列上建立检索,在不同值少的列上不要建立索引。比如在雇员表的“性别”列上只有“男”与“女”两个不同值,因此就无必要建立索引。如果建立索引不但不会提高查询效率,反而会严重降低更新速度。

●如果待排序的列有多个,可以在这些列上建立复合索引(compound index)。

●使用系统工具。如Informix数据库有一个tbcheck工具,可以在可疑的索引上进行检查。在一些数据库服务器上,索引可能失效或者因为频繁操作而使得读取效率降低,如果一个使用索引的查询不明不白地慢下来,可以试着用tbcheck工具检查索引的完整性,必要时进行修复。另外,当数据库表更新大量数据后,删除并重建索引可以提高查询速度。

2.避免或简化排序

应当简化或避免对大型表进行重复的排序。当能够利用索引自动以适当的次序产生输出时,优化器就避免了排序的步骤。以下是一些影响因素:

●索引中不包括一个或几个待排序的列;

●group by或order by子句中列的次序与索引的次序不一样;

●排序的列来自不同的表。

为了避免不必要的排序,就要正确地增建索引,合理地合并数据库表(尽管有时可能影响表的规范化,但相对于效率的提高是值得的)。如果排序不可避免,那么应当试图简化它,如缩小排序的列的范围等。

3.消除对大型表行数据的顺序存取

在嵌套查询中,对表的顺序存取对查询效率可能产生致命的影响。比如采用顺序存取策略,一个嵌套3层的查询,如果每层都查询1000行,那么这个查询就要查询10亿行数据。避免这种情况的主要方法就是对连接的列进行索引。例如,两个表:学生表(学号、姓名、年龄……)和选课表(学号、课程号、成绩)。如果两个表要做连接,就要在“学号”这个连接字段上建立索引。

4.避免相关子查询

一个列的标签同时在主查询和where子句中的查询中出现,那么很可能当主查询中的列值改变之后,子查询必须重新查询一次。查询嵌套层次越多,效率越低,因此应当尽量避免子查询。如果子查询不可避免,那么要在子查询中过滤掉尽可能多的行。

5.避免困难的正规表达式

MATCHES和LIKE关键字支持通配符匹配,技术上叫正规表达式。但这种匹配特别耗费时间。例如:SELECT * FROM customer WHERE zipcode LIKE “98_ _ _”

即使在zipcode字段上建立了索引,在这种情况下也还是采用顺序扫描的方式。如果把语句改为SELECT * FROM customer WHERE zipcode >“98000”,在执行查询时就会利用索引来查询,显然会大大提高速度。

另外,还要避免非开始的子串。例如语句:SELECT * FROM customer WHERE zipcode[2,3]>“80”,在where子句中采用了非开始子串,因而这个语句也不会使用索引。

6.使用临时表加速查询

把表的一个子集进行排序并创建临时表,有时能加速查询。它有助于避免多重排序操作,而且在其他方面还能简化优化器的工作。

临时表中的行要比主表中的行少,而且物理顺序就是所要求的顺序,减少了磁盘I/O,所以查询工作量可以得到大幅减少。

注意:临时表创建后不会反映主表的修改。在主表中数据频繁修改的情况下,注意不要丢失数据。

7.用排序来取代非顺序存取

非顺序磁盘存取是最慢的操作,表现在磁盘存取臂的来回移动。SQL语句隐藏了这一情况,使得我们在写应用程序时很容易写出要求存取大量非顺序页的查询。

有些时候,用数据库的排序能力来替代非顺序的存取能改进查询。

索引失效原因:

1、对索引列运算,运算包括(+、-、*、/、!、<>、%、like'%_'(%放在前面)
2、类型错误,如字段类型为varchar,where条件用number。
3、对索引应用内部函数,这种情况下应该建立基于函数的索引
如select * from template t where ROUND(t.logicdb_id) = 1
此时应该建ROUND(t.logicdb_id)为索引,mysql8.0开始支持函数索引,5.7可以通过虚拟列的方式来支持,之前只能新建一个ROUND(t.logicdb_id)列然后去维护
4、如果条件有or,即使其中有条件带索引也不会使用(这也是为什么建议少使用or的原因),如果想使用or,又想索引有效,只能将or条件中的每个列加上索引
5、如果列类型是字符串,那一定要在条件中数据使用引号,否则不使用索引;
6、B-tree索引 is null不会走,is not null会走,位图索引 is null,is not null 都会走
7、组合索引遵循最左原则

说到这里呢?怎么去找一些Mysql的实战案例:


实例说明:

我们在开发的过程中使用分页是不可避免的,通常情况下我们的做法是使用limit加偏移量:

select * from table where column=xxx order by xxx limit 1,50

当数据量比较小时(100万以内),无论你翻到哪一页,性能都是很快的。如果查询慢,只要在
where条件和order by 的列上加上索引就可以解决。但是,当数据量大的时候(小编遇到的情况
是500万数据),如果翻到最后几页,即使加了索引,查询也是非常慢的,这是什么原因导致的呢?我们该如何解决呢?

 SELECT
    table t
INNER JOIN (
    SELECT