本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《
阿里云开发者社区用户服务协议
》和
《
阿里云开发者社区知识产权保护指引
》。如果您发现本社区中有涉嫌抄袭的内容,填写
侵权投诉表单
进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
了解k8s中的Liveness和Readiness
Liveness:
表明是否容器正在运行。如果liveness探测为fail,则kubelet会kill掉容器,并且会触发restart设置的策略。默认不设置的情况下,该状态为success.
Readiness:
表明容器是否可以接受服务请求。如果readiness探测失败,则endpoints控制器会从endpoints中摘除该Pod IP。在初始化延迟探测时间之前,默认是Failure。如果没有设置readiness探测,该状态为success。
基于Kubernetes 1.11.0
1.启动探测
在kubelet启动是时候会启动健康检查的探测:
kubelet.go中Run方法
kl.probeManager.Start() //启动探测服务
2.看一下probeManager都做了哪些事情
prober_manager.go中我们看一下这段代码:
// Manager manages pod probing. It creates a probe "worker" for every container that specifies a
// probe (AddPod). The worker periodically probes its assigned container and caches the results. The
// manager use the cached probe results to set the appropriate Ready state in the PodStatus when
// requested (UpdatePodStatus). Updating probe parameters is not currently supported.
// TODO: Move liveness probing out of the runtime, to here.
type Manager interface {
// AddPod creates new probe workers for every container probe. This should be called for every
// pod created.
AddPod(pod *v1.Pod)
// RemovePod handles cleaning up the removed pod state, including terminating probe workers and
// deleting cached results.
RemovePod(pod *v1.Pod)
// CleanupPods handles cleaning up pods which should no longer be running.
// It takes a list of "active pods" which should not be cleaned up.
CleanupPods(activePods []*v1.Pod)
// UpdatePodStatus modifies the given PodStatus with the appropriate Ready state for each
// container based on container running status, cached probe results and worker states.
UpdatePodStatus(types.UID, *v1.PodStatus)
// Start starts the Manager sync loops.
Start()
这是一个Manager的接口声明,该Manager负载pod的探测。当执行AddPod时,会为Pod中每一个容器创建一个执行探测任务的worker, 该worker会对所分配的容器进行周期性的探测,并把探测结果缓存。当UpdatePodStatus方法执行时,该manager会使用探测的缓存结果设置PodStatus为近似Ready的状态:

3.一“探”究竟
先看一下探测的struct
type Probe struct {
// The action taken to determine the health of a container
Handler `json:",inline" protobuf:"bytes,1,opt,name=handler"`
// Number of seconds after the container has started before liveness probes are initiated.
// More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
// +optional
InitialDelaySeconds int32 `json:"initialDelaySeconds,omitempty" protobuf:"varint,2,opt,name=initialDelaySeconds"`
// Number of seconds after which the probe times out.
// Defaults to 1 second. Minimum value is 1.
// More info: https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes
// +optional
TimeoutSeconds int32 `json:"timeoutSeconds,omitempty" protobuf:"varint,3,opt,name=timeoutSeconds"`
// How often (in seconds) to perform the probe.
// Default to 10 seconds. Minimum value is 1.
// +optional
PeriodSeconds int32 `json:"periodSeconds,omitempty" protobuf:"varint,4,opt,name=periodSeconds"`
// Minimum consecutive successes for the probe to be considered successful after having failed.
// Defaults to 1. Must be 1 for liveness. Minimum value is 1.
// +optional
SuccessThreshold int32 `json:"successThreshold,omitempty" protobuf:"varint,5,opt,name=successThreshold"`
// Minimum consecutive failures for the probe to be considered failed after having succeeded.
// Defaults to 3. Minimum value is 1.
// +optional
FailureThreshold int32 `json:"failureThreshold,omitempty" protobuf:"varint,6,opt,name=failureThreshold"`
initialDelaySeconds: 表示容器启动之后延迟多久进行liveness探测
timeoutSeconds:每次执行探测的超时时间
periodSeconds:探测的周期时间
successThreshold:最少连续几次探测成功的次数,满足该次数则认为success。
failureThreshold:最少连续几次探测失败的次数,满足该次数则认为fail
Handler:
不论是liveness还是readiness都支持3种类型的探测方式:执行命令、http方式以及tcp方式。
// Handler defines a specific action that should be taken
// TODO: pass structured data to these actions, and document that data here.
type Handler struct {
// One and only one of the following should be specified.
// Exec specifies the action to take.
// +optional
Exec *ExecAction `json:"exec,omitempty" protobuf:"bytes,1,opt,name=exec"`
// HTTPGet specifies the http request to perform.
// +optional
HTTPGet *HTTPGetAction `json:"httpGet,omitempty" protobuf:"bytes,2,opt,name=httpGet"`
// TCPSocket specifies an action involving a TCP port.
// TCP hooks not yet supported
// TODO: implement a realistic TCP lifecycle hook
// +optional
TCPSocket *TCPSocketAction `json:"tcpSocket,omitempty" protobuf:"bytes,3,opt,name=tcpSocket"`
接下来看一下prober.go中的runProbe方法。
func (pb *prober) runProbe(probeType probeType, p *v1.Probe, pod *v1.Pod, status v1.PodStatus, container v1.Container, containerID kubecontainer.ContainerID) (probe.Result, string, error) {
timeout := time.Duration(p.TimeoutSeconds) * time.Second
if p.Exec != nil {
glog.V(4).Infof("Exec-Probe Pod: %v, Container: %v, Command: %v", pod, container, p.Exec.Command)
command := kubecontainer.ExpandContainerCommandOnlyStatic(p.Exec.Command, container.Env)
return pb.exec.Probe(pb.newExecInContainer(container, containerID, command, timeout))
if p.HTTPGet != nil {
scheme := strings.ToLower(string(p.HTTPGet.Scheme))
host := p.HTTPGet.Host
if host == "" {
host = status.PodIP
port, err := extractPort(p.HTTPGet.Port, container)
if err != nil {
return probe.Unknown, "", err
path := p.HTTPGet.Path
glog.V(4).Infof("HTTP-Probe Host: %v://%v, Port: %v, Path: %v", scheme, host, port, path)
url := formatURL(scheme, host, port, path)
headers := buildHeader(p.HTTPGet.HTTPHeaders)
glog.V(4).Infof("HTTP-Probe Headers: %v", headers)
if probeType == liveness {
return pb.livenessHttp.Probe(url, headers, timeout)
} else { // readiness
return pb.readinessHttp.Probe(url, headers, timeout)
if p.TCPSocket != nil {
port, err := extractPort(p.TCPSocket.Port, container)
if err != nil {
return probe.Unknown, "", err
host := p.TCPSocket.Host
if host == "" {
host = status.PodIP
glog.V(4).Infof("TCP-Probe Host: %v, Port: %v, Timeout: %v", host, port, timeout)
return pb.tcp.Probe(host, port, timeout)
glog.Warningf("Failed to find probe builder for container: %v", container)
return probe.Unknown, "", fmt.Errorf("Missing probe handler for %s:%s", format.Pod(pod), container.Name)
1.执行命令方式
通过newExecInContainer方法调用CRI执行命令:

// ExecAction describes a "run in container" action.
type ExecAction struct {
// Command is the command line to execute inside the container, the working directory for the
// command is root ('/') in the container's filesystem. The command is simply exec'd, it is
// not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use
// a shell, you need to explicitly call out to that shell.
// Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
// +optional
Command []string `json:"command,omitempty" protobuf:"bytes,1,rep,name=command"`
2.http GET方式
通过http GET方式进行探测。
Port:表示访问容器的端口
Host:表示访问的主机,默认是Pod IP
// HTTPGetAction describes an action based on HTTP Get requests.
type HTTPGetAction struct {
// Path to access on the HTTP server.
// +optional
Path string `json:"path,omitempty" protobuf:"bytes,1,opt,name=path"`
// Name or number of the port to access on the container.
// Number must be in the range 1 to 65535.
// Name must be an IANA_SVC_NAME.
Port intstr.IntOrString `json:"port" protobuf:"bytes,2,opt,name=port"`
// Host name to connect to, defaults to the pod IP. You probably want to set
// "Host" in httpHeaders instead.
// +optional
Host string `json:"host,omitempty" protobuf:"bytes,3,opt,name=host"`
// Scheme to use for connecting to the host.
// Defaults to HTTP.
// +optional
Scheme URIScheme `json:"scheme,omitempty" protobuf:"bytes,4,opt,name=scheme,casttype=URIScheme"`
// Custom headers to set in the request. HTTP allows repeated headers.
// +optional
HTTPHeaders []HTTPHeader `json:"httpHeaders,omitempty" protobuf:"bytes,5,rep,name=httpHeaders"`
3.tcp方式
通过设置主机和端口即可进行tcp方式访问
// TCPSocketAction describes an action based on opening a socket
type TCPSocketAction struct {
// Number or name of the port to access on the container.
// Number must be in the range 1 to 65535.
// Name must be an IANA_SVC_NAME.
Port intstr.IntOrString `json:"port" protobuf:"bytes,1,opt,name=port"`
// Optional: Host name to connect to, defaults to the pod IP.
// +optional
Host string `json:"host,omitempty" protobuf:"bytes,2,opt,name=host"`
此处脑洞一下:如果三种探测方式都设置了,会如何执行处理?
通过k8s部署生产环境应用时,建议设置上liveness和readiness, 这也是保障服务稳定性的最佳实践。
另外由于Pod Ready不能保证实际的业务应用Ready可用,在最新的 1.14 版本中新增了一个Pod Readiness Gates
特性 。通过这个特性,可以保证应用Ready后进而设置Pod Ready。
针对上面的脑洞:如果三种探测方式都设置了,会如何执行处理?
答:我们如果在Pod中设置多个探测方式,提交配置的时候会直接报错:

此处继续源代码:在validation.go中validateHandler中进行了限制(也为上面Handler struct提到的"One and only one of the following should be specified."提供了事实依据)
func validateHandler(handler *core.Handler, fldPath *field.Path) field.ErrorList {
numHandlers := 0
allErrors := field.ErrorList{}
if handler.Exec != nil {
if numHandlers > 0 {
allErrors = append(allErrors, field.Forbidden(fldPath.Child("exec"), "may not specify more than 1 handler type"))
} else {
numHandlers++
allErrors = append(allErrors, validateExecAction(handler.Exec, fldPath.Child("exec"))...)
if handler.HTTPGet != nil {
if numHandlers > 0 {
allErrors = append(allErrors, field.Forbidden(fldPath.Child("httpGet"), "may not specify more than 1 handler type"))
} else {
numHandlers++
allErrors = append(allErrors, validateHTTPGetAction(handler.HTTPGet, fldPath.Child("httpGet"))...)
if handler.TCPSocket != nil {
if numHandlers > 0 {
allErrors = append(allErrors, field.Forbidden(fldPath.Child("tcpSocket"), "may not specify more than 1 handler type"))
} else {
numHandlers++
allErrors = append(allErrors, validateTCPSocketAction(handler.TCPSocket, fldPath.Child("tcpSocket"))...)
if numHandlers == 0 {
allErrors = append(allErrors, field.Required(fldPath, "must specify a handler type"))
return allErrors
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
使用ACK Serverless容器化部署大语言模型FastChat
通过EDAS实现K8s微服务应用的金丝雀发布
基于ACK Serverless轻松部署企业级Stable Diffusion
通过Helm CLI部署wordpress到ACK集群
基于MSE实现K8s集群内多服务的灰度发布
使用Kubectl部署web服务到K8s集群