如何实现多轮对话?

gpt-3.5-turbo 模型调用方法 openai.ChatCompletion.create 里传入的 message 是一个列表,列表里每个元素是字典,包含了角色和内容,我们只需将每轮对话都存储起来,然后每次提问都带上之前的问题和回答即可。

import openai
import json
import os
os.environ["HTTP_PROXY"] = "http://127.0.0.1:20171"
os.environ["HTTPS_PROXY"] = "http://127.0.0.1:20171"
# 获取 api
def get_api_key():
    # 可以自己根据自己实际情况实现
    # 以我为例子,我是存在一个 openai_key 文件里,json 格式
    {"api": "你的 api keys"}
    openai_key_file = './envs/openai_key'
    with open(openai_key_file, 'r', encoding='utf-8') as f:
        openai_key = json.loads(f.read())
    return openai_key['api']
openai.api_key = get_api_key() 
class ChatGPT:
    def __init__(self, user):
        self.user = user
        self.messages = [{"role": "system", "content": "一个有10年Python开发经验的资深算法工程师"}]
        self.filename="./user_messages.json"
    def ask_gpt(self):
        # q = "用python实现:提示手动输入3个不同的3位数区间,输入结束后计算这3个区间的交集,并输出结果区间"
        rsp = openai.ChatCompletion.create(
          model="gpt-3.5-turbo",
          messages=self.messages
        return rsp.get("choices")[0]["message"]["content"]
    def writeTojson(self):
            # 判断文件是否存在
            if not os.path.exists(self.filename):
                with open(self.filename, "w") as f:
                    # 创建文件
            with open(self.filename, 'r', encoding='utf-8') as f:
                content = f.read()
                msgs = json.loads(content) if len(content) > 0 else {}
            msgs.update({self.user : self.messages})
            with open(self.filename, 'w', encoding='utf-8') as f:
                json.dump(msgs, f)
        except Exception as e:
            print(f"错误代码:{e}")           
def main():
    user = input("请输入用户名称: ")
    chat = ChatGPT(user)
    while 1:
        # 限制对话次数
        if len(chat.messages) >= 11:
            print("******************************")
            print("*********强制重置对话**********")
            print("******************************")
            # 写入之前信息
            chat.writeTojson()
            user = input("请输入用户名称: ")
            chat = ChatGPT(user)
        q = input(f"【{chat.user}】")
        # 逻辑判断
        if q == "0":
            print("*********退出程序**********")
            # 写入之前信息
            chat.writeTojson()
            break
        elif q == "1":
            print("**************************")
            print("*********重置对话**********")
            print("**************************")
            # 写入之前信息
            chat.writeTojson()
            user = input("请输入用户名称: ")
            chat = ChatGPT(user)
            continue
        # 提问-回答-记录
        chat.messages.append({"role": "user", "content": q})
        answer = chat.ask_gpt()
        print(f"【ChatGPT】{answer}")
        chat.messages.append({"role": "assistant", "content": answer})
if __name__ == '__main__':
    main()

代码解析:

ChatGPT 类,包含三个函数:

  • __init__初始化函数,初始化了三个个实例变量,user、messages、filename(当前用户、消息列表、存储记录的文件路径)。

  • ask_gpt函数,将当前用户所有历史消息+最新提问发送给 gpt-3.5-turbo ,并返回响应结果。

  • writeTojson函数,结束/重置用户时记录当前用户之前的访问数据。

  • main函数,程序入口函数,用户输入用户名后进入与 ChatGPT 的循环对话中,输入 0 退出程序,输入 1 重置用户,退出和重置都会将当前用户之前访问数据记录搭配 json 文件中。

  • 由于 gpt-3.5-turbo 单次请求最大 token 数为:4096,所以代码里限制了下对话次数。

  • 你可以写个函数,从 json 文件读取历史用户访问记录,然后每次访问可以选用户。
  • 你可以写个 web 服务,使用 session 或者数据库支持多用户同时登录,同时访问。
  • 你可以基于之前分享的钉钉机器人项目,将 gpt-3.5-turbo 接入钉钉机器人。
如何实现多轮对话?gpt-3.5-turbo 模型调用方法 openai.ChatCompletion.create 里传入的 message 是一个列表,列表里每个元素是字典,包含了角色和内容,我们只需将每轮对话都存储起来,然后每次提问都带上之前的问题和回答即可。
目前,语音识别,即将语音内容转换为文字的技术已经比较成熟,遥想当时锤子发布会上展示的讯飞输入法语音识别,着实让讯飞火了一把。由于此类语音识别需要采集大量的样本,才能达到一定的准确度,个人很难从零开始搭建。但是,许多拥有语音识别技术的公司,或多或少会提供一些API或者SDK供开发者使用,这样就把语音识别的门槛降到了一个很低的程度,只需几行代码即可实现。下面我介绍以下如何使用Python调用百度的REST API实现一个简单的语音识别。 注册账号,并成为开发者 打开 http://yuyin.baidu.com/ ,并且使用你的百度账号登陆,如果你不是开发者,系统会自动引导你申请成为开发者。
本代码适用于想要调用ChatGPT3.5 API并进行二次开发的人员,当然,打算简单通过python调用ChatGPT的朋友也可以直接下载运行,前提是有一个openai的账号,获取到API。 本代码可以实现通过控制台与ChatGPT对话,并且有记忆本次对话中的历史内容的能力(多轮对话),有兴趣的小伙伴可以下载使用。当然,除了python版本,我这边还有C#版本的调用代码,有兴趣的小伙伴可以联系我。